Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cells ; 12(24)2023 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-38132108

RESUMO

Mesenchymal stromal cells (MSCs) have recently been shown to play an important role in the growth and progression of many solid tumors, including cholangiocarcinoma (CCA). The human placental amniotic membrane (hPAM) is one of the most favorable sources of MSCs due to its availability and non-invasive harvesting procedure. However, the role of human placental amniotic membrane mesenchymal stromal cells (hPAMSCs) in the growth and progression of human CCA has not yet been determined. This study investigates the effects of conditioned medium derived from hPAMSCs (PA-CM) on the properties of three human CCA cell lines and explores possible mechanisms of action. Varying concentrations of PA-CM were used to treat CCA cells to determine their effects on the proliferation and apoptosis of CCA cells. The results showed that PA-CM inhibited the proliferation and colony-forming capacity of KKU100, KKU213A, and KKU213B cells. PA-CM also promoted the apoptosis of these CCA cells by causing the loss of mitochondrial membrane potential. Western Blotting confirmed that PA-CM induced CCA cell apoptosis by increasing the levels of the Bax/Bcl-2 ratio, cleaved caspase 3, and cleaved PARP, possibly by inhibiting the IL-6/JAK2/STAT3 signaling pathway. Moreover, our in vivo study also confirmed the suppressive effect of hPAMSCs on CCA cells by showing that PA-CM reduced tumor volume in nude mice transplanted with human CCA cells. Taken together, our results demonstrate that PA-CM has potent tumor-suppressive effects on human CCA cells and could potentially be used in combination with chemotherapy to develop a more effective treatment for CCA patients.


Assuntos
Neoplasias dos Ductos Biliares , Colangiocarcinoma , Células-Tronco Mesenquimais , Gravidez , Animais , Camundongos , Humanos , Feminino , Interleucina-6/metabolismo , Meios de Cultivo Condicionados/farmacologia , Meios de Cultivo Condicionados/metabolismo , Âmnio/metabolismo , Camundongos Nus , Proliferação de Células , Placenta/metabolismo , Colangiocarcinoma/patologia , Transdução de Sinais , Ductos Biliares Intra-Hepáticos/patologia , Neoplasias dos Ductos Biliares/patologia , Apoptose , Células-Tronco Mesenquimais/metabolismo , Janus Quinase 2/metabolismo
2.
Sci Rep ; 12(1): 11341, 2022 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-35790790

RESUMO

Cholangiocarcinoma (CCA) is an aggressive malignancy arising from the damaged epithelial cells of the biliary tract. Previous studies have reported that the multi-potent mesenchymal stem cells (MSCs) activate a series of tumor signaling pathways by releasing several cytokines to influence tumor cell development. However, the roles and mechanisms of human chorion-derived MSCs (CH-MSCs) in cholangiocarcinoma progression have not been fully addressed. This present study aims to examine the effects of conditioned media derived from CH-MSCs (CH-CM) on CCA cell lines and investigate the respective underlying mechanism of action. For this purpose, MSCs were isolated from chorion tissue, and three cholangiocarcinoma cell lines, namely KKU100, KKU213A, and KKU213B, were used. MTT assay, annexin V/PI analysis, and JC-1 staining were used to assess the effects of CH-CM on proliferation and apoptosis of CCA cells, respectively. Moreover, the effect of CH-CM on caspase-dependent apoptotic pathways was also evaluated. The western blotting assay was also used for measuring the expression of JAK2/STAT3 signaling pathway-associated proteins. The results showed that CH-CM suppressed proliferation and promoted apoptosis of CCA cell lines. CH-CM treatment-induced loss of mitochondrial membrane potential (∆Ψm) in CCA cell lines. The factors presented in the CH-CM also inhibited JAK2/STAT3 signaling, reduced the expression of BCL-2, and increased BAX expression in CCA cells. In conclusion, our study suggests that the CH-CM has a potent anti-cancer effect on cholangiocarcinoma cells and thus provides opportunities for use in alternative cell therapy or in combination with a conventional chemotherapeutic drug to increase the efficiency of CCA treatment.


Assuntos
Neoplasias dos Ductos Biliares , Colangiocarcinoma , Células-Tronco Mesenquimais , Apoptose , Ductos Biliares Intra-Hepáticos , Linhagem Celular , Córion , Humanos , Fatores Imunológicos , Janus Quinase 2 , Neutropenia , Fator de Transcrição STAT3 , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...